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Inspired by the unhydrated variant of the superconducting material NaxCoO2·yH2O at x= 1
3 , we study the t-J

model on a honeycomb lattice by using an efficient loop-cluster algorithm. The low-energy physics of the
undoped system and of the single-hole sector is described by a systematic low-energy effective field theory.

The staggered magnetization per spin M̃s=0.2688�3�, the spin stiffness �s=0.102�2�J, the spin-wave velocity
c=1.297�16�Ja, and the kinetic mass M� of a hole are obtained by fitting the numerical Monte Carlo data to the
effective field theory predictions.
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I. INTRODUCTION

Since the discovery of high-temperature superconductiv-
ity in cuprate materials,1 the Hubbard and t-J models have
been of central importance in strongly correlated electron
systems. However, due to their strong coupling, a systematic
analytic treatment of these models is currently not available.
Similarly, a severe sign problem away from half filling pre-
vents us from understanding these systems quantitatively by
reliable Monte Carlo calculations. Despite these difficulties,
much effort has been devoted to understanding the properties
of t-J-type models on the square lattice. Although some con-
troversial results have been obtained, various studies includ-
ing exact diagonalization,2,3 series expansion,4 and Monte
Carlo simulations5,6 enable us to understand the hole dynam-
ics quantitatively, at least to some extent. In particular, these
studies all obtained minima of the single-hole dispersion re-
lation at lattice momenta �� �

2a , �
�
2a � in the Brillouin zone

of the square lattice which is in agreement with experimental
results.7–9

A reliable and order-by-order exact way to investigate the
low-energy physics of lightly doped antiferromagnets is pro-
vided by a systematic low-energy effective field theory. The
physics of the undoped systems is quantitatively described
by magnon chiral perturbation theory,10–14 while the interac-
tions of magnons and holes are described by a low-energy
effective theory for hole-doped antiferromagnets.15,16 Predic-
tions of the effective theory only depend on a small number
of low-energy constants which can be determined from either
experiments or Monte Carlo data. Thus, the use of low-
energy effective theories together with reliable Monte Carlo
simulations provides an unbiased approach to studying the
low-energy physics of these systems. In particular, using the
loop-cluster algorithm,17 the low-energy parameters of the
spin-1/2 Heisenberg model have been determined with very
high precision.18,19 Indeed, thanks to the combination of very
efficient Monte Carlo simulations with the systematic low-
energy effective field theory, undoped antiferromagnets on
the square-lattice such as La2CuO4 and Sr2CuO2Cl2 are
among the quantitatively best-understood condensed matter
systems.

In addition to the cuprates, another superconducting ma-
terial, NaxCoO2·yH2O, has drawn a lot of attention both

theoretically and experimentally. Unfortunately, due to the
fact that the underlying lattice geometry of the spin-1/2 co-
balt sites in these materials is triangular—which leads to
strong geometric frustration—a first-principles Monte Carlo
study is impossible in practice. Nevertheless, the spin- and
charge-ordering tendencies observed and studied in Refs.
20–22 may suggest that at filling x= 1

3 , the unhydrated parent
compound NaxCoO2 can be described by the t-J model on a
half-filled honeycomb lattice which allows one to simulate
the system efficiently with the loop-cluster algorithm.

Another system on the honeycomb lattice that has been
investigated with great vigor is graphene—a single sheet of
graphite �see Ref. 23 for a detailed review�. As a conse-
quence of the geometry of the honeycomb lattice, the low-
energy excitations of graphene are massless Dirac fermions.
If some variant of graphene would exist at stronger coupling,
one would eventually expect a phase transition separating
graphene’s unbroken phase from a strong-coupling antiferro-
magnetic phase in which the SU�2�s spin symmetry is spon-
taneously broken to U�1�s. The low-energy effective theory
of the unbroken phase and of the critical point has been
constructed in Ref. 24.

Motivated by possible applications to NaxCoO2, we inves-
tigate the spin-1/2 Heisenberg model as well as the t-J model
on the honeycomb lattice by using the quantum Monte Carlo
method. Just as in the square lattice case, the long-distance
physics of these models is described quantitatively by a sys-
tematic low-energy effective field theory. At low energies,
the Heisenberg model on a bipartite lattice is described by
magnon chiral perturbation theory, and accordingly, the t-J
model is described by a low-energy effective field theory for
magnons and holes. Based on the same method that has been
used in the square lattice case, we have constructed the
leading-order terms in the action of a systematic low-energy
effective field theory for magnons and holes on the honey-
comb lattice. In this paper, we determine the corresponding
leading-order low-energy constants, namely, the staggered

magnetization per spin M̃s, which was also obtained in Ref.
25, the spin stiffness �s, the spin-wave velocity c, and the
kinetic mass M� of a doped hole by fitting the Monte Carlo
data to the effective field theory predictions. We also inves-
tigate the bandwidth and the quasiparticle weight of a single
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hole on the honeycomb lattice, which have already been
studied in Ref. 26.

The rest of this paper is organized as follows. In Sec. II,
we introduce the relevant microscopic models as well as cor-
responding observables. Section III reviews the low-energy
effective theory for magnons, and Sec. IV is devoted to the
Monte Carlo determination of the corresponding low-energy
parameters. The single-hole physics is investigated in Sec. V,
and the effective theory for holes and magnons is discussed
in Sec. VI, while Sec. VII contains our conclusions. The
basics of the numerical method to simulate the one-hole sec-
tor are described in the Appendix.

II. MICROSCOPIC MODELS AND CORRESPONDING
OBSERVABLES

In this section we introduce the Hamiltonians of the mi-
croscopic t-J model and the Heisenberg model as well as
some relevant observables. The t-J model is defined by the
Hamilton operator

H = P�− t�
�xy�

�cx
†cy + cy

†cx� + J�
�xy�

S�x · S�y�P . �1�

Here cx
† and cx are fermion creation and annihilation opera-

tors at a site x with

cx = �cx↑

cx↓
	 , �2�

whose components obey standard anticommutation relations.
In terms of the Pauli matrices �� the local spin operator at a
site x is given by

S�x = cx
†��

2
cx. �3�

The projection operator P restricts the Hilbert space by
eliminating doubly occupied sites. Hence the t-J model al-
lows empty or singly occupied sites only. The hopping of
fermions is controlled by the parameter t, while J�0 is the
antiferromagnetic exchange coupling between neighboring
spins. At half filling, the t-J model reduces to the Heisenberg
model with the Hamiltonian

H = J�
�xy�

S�x · S�y . �4�

The honeycomb lattice with periodic spatial boundary
conditions implemented in our simulations is depicted in Fig.
1. The dashed rectangle in Fig. 1, which contains four spins,
is the elementary cell for building a periodic honeycomb
lattice covering a rectangular area. For instance, the honey-
comb lattice shown in Fig. 1 contains 3�3 elementary cells.
The lattice spacing a is the distance between two neighbor-
ing sites. The honeycomb lattice is not a Bravais lattice. In-
stead it consists of two triangular Bravais sublattices A and B
�depicted by solid and open circles in Fig. 1�. As a conse-
quence, the momentum space of the honeycomb lattice is a
doubly covered Brillouin zone of the two triangular sublat-
tices �depicted in Fig. 2�.

A physical quantity of central interest is the staggered
susceptibility �corresponding to the third component of the
staggered magnetization Ms

3�, which is given by

�s =
1

L1L2



0

�

dt�Ms
3�0�Ms

3�t��

=
1

L1L2



0

�

dt
1

Z
Tr�Ms

3�0�Ms
3�t�exp�− �H�� . �5�

Here � is the inverse temperature, L1 and L2 are the spatial
box sizes in the x1 and x2 directions, respectively, and

Z = Tr exp�− �H� �6�

is the partition function. The staggered magnetization order

parameter M� s is defined by

FIG. 1. The periodic honeycomb lattice consisting of two trian-
gular sublattices A and B, which are depicted by solid and open
circles, respectively. The dashed rectangle is an elementary cell for
building a periodic honeycomb lattice covering a rectangular area.

FIG. 2. The momentum space of a honeycomb lattice, which is
a doubly covered Brillouin zone dual to the two triangular sublat-
tices A and B.
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M� s = �
x

�− 1�xS�x. �7�

Here �−1�x=1 on the A sublattice and �−1�x=−1 on the B
sublattice, respectively. Another relevant quantity is the uni-
form susceptibility which is given by

�u =
1

L1L2



0

�

dt�M3�0�M3�t��

=
1

L1L2



0

�

dt
1

Z
Tr�M3�0�M3�t�exp�− �H�� . �8�

Here

M� = �
x

S�x �9�

is the uniform magnetization. Both �s and �u can be mea-
sured very efficiently with the loop-cluster algorithm using
improved estimators.18 In particular, in the multicluster ver-
sion of the algorithm the staggered susceptibility is given in
terms of the cluster sizes C �which have the dimension of
time�, i.e.,

�s =
1

4�L2��
C

C2� . �10�

Similarly, the uniform susceptibility

�u =
�

4L2 �Wt
2� =

�

4L2��
C

Wt�C�2� �11�

is given in terms of the temporal winding number Wt
=�CWt�C� which is the sum of winding numbers Wt�C� of the
loop clusters C around the Euclidean time direction. Simi-
larly, the spatial winding numbers are defined by Wi
=�CWi�C� with i� �1,2�.

III. LOW-ENERGY EFFECTIVE THEORY FOR
MAGNONS

Due to the spontaneous breaking of the SU�2�s spin sym-
metry down to its U�1�s subgroup, the low-energy physics of
antiferromagnets is governed by two massless Goldstone
bosons, the antiferromagnetic spin waves or magnons. The
description of the low-energy magnon physics by an effec-
tive theory was pioneered by Chakravarty et al. in Ref. 10. In
analogy to chiral perturbation theory for the pseudo-
Goldstone pions in QCD, a systematic low-energy effective
field theory for magnons was developed in Refs. 11–14. The
staggered magnetization of an antiferromagnet can be de-
scribed by a unit-vector field e��x� in the coset space
SU�2�s /U�1�s=S2, i.e.,

e��x� = �e1�x�,e2�x�,e3�x��, e��x�2 = 1. �12�

Here x= �x1 ,x2 , t� denotes a point in �2+1�-dimensional
space-time. To leading order, the Euclidean magnon low-
energy effective action takes the form

S�e�� =
 d2xdt
�s

2
��ie� · �ie� +

1

c2�te� · �te�	 , �13�

where the index i� �1,2� labels the two spatial directions
and t refers to the Euclidean time direction. The parameter �s
is the spin stiffness and c is the spin-wave velocity. At low
energies the antiferromagnet has a relativistic spectrum.

Using the above Euclidean action, detailed calculations of
a variety of physical quantities including the next-to-next-to-
leading-order contributions have been carried out in Ref. 27.
Here we only quote the results that are relevant for our study,
namely, the finite-temperature and finite-volume effects of
the staggered and uniform susceptibilities, as well as results
on the rotor spectrum of the antiferromagnet in a finite vol-
ume. The aspect ratio of a spatially quadratic space-time box
with L1=L2=L is characterized by l= ��c /L�1/3, with which
one distinguishes cubical space-time volumes with �c�L
from cylindrical ones with �c	L. In the cubical regime the
volume and temperature dependence of the staggered suscep-
tibility is given by

�s =
Ms

2L2�

3
�1 + 2

c

�sLl
�1�l� + � c

�sLl
	2

��1�l�2 + 3�2�l��

+ O� 1

L3	� , �14�

where Ms is the staggered magnetization density. The uni-
form susceptibility takes the form

�u =
2�s

3c2�1 +
1

3

c

�sLl
�̃1�l� +

1

3
� c

�sLl
	2

���̃2�l� −
1

3
�̃1�l�2 − 6
�l�� + O� 1

L3	� . �15�

The functions �i�l�, �̃i�l�, and 
�l�, which only depend on l,
are shape coefficients of the space-time box defined in Ref.
27. In the very low-temperature limit, one enters the cylin-
drical regime of space-time volumes with �c	L. In this

case, the staggered magnetization vector M� s acts as a quan-
tum rotor, and correspondingly, the low-energy end of the
spectrum takes the form

ES =
S�S + 1�

2�
. �16�

Here S� �0,1 ,2 , . . .� is the spin and � is the moment of
inertia of the quantum rotor which is given by27

� =
�sL

2

c2 �1 +
3.900 265c

4��sL
+ O� 1

L2	� . �17�

The partition function of the �2S+1�-fold degenerate rotor
spectrum is given by

Z = �
S=0

�

�2S + 1�exp�− �ES� . �18�

The probability distribution of the uniform magnetization
M3=S3 is then given by
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p�M3� =
1

Z
�

SM3

exp�− �ES� . �19�

IV. DETERMINATION OF THE LOW-ENERGY
PARAMETERS OF THE UNDOPED SYSTEM

In order to determine the low-energy constants Ms, �s,
and c, we have performed numerical simulations of the
Heisenberg model on the honeycomb lattice with up to 4680
spins in the cubical and cylindrical regimes. The cubical re-
gime is determined by the condition ��CW1�C�2�
���CW2�C�2����CWt�C�2� �which implies that �c�L�.
The chiral perturbation-theory predictions for �s and �u in
Eqs. �14� and �15� are derived for a �2+1�-dimensional box
with equal extent in the two spatial directions �which we
refer to as a square-shaped area�. Since it is not possible to
consider the honeycomb geometry on an exactly square-
shaped area, our simulations are done on almost square-
shaped rectangles. To be more precise, the lattices used in
our simulations deviate from a perfect square shape by less
than 0.4%. We have performed an interpolation on some of
our data to the exactly square-shaped area and find agree-
ment between the fits of the interpolated and the raw data.
The inclusion of O�1 /L3� corrections in the fits leads to con-
sistent results as well. Instead of considering the staggered
magnetization density Ms of Eq. �14�, we choose to quote

the staggered magnetization per spin M̃s, which is related to
Ms by

M̃s =
3�3

4
Msa

2. �20�

Some numerical data from our simulations are listed in
Table I. By fitting �s and �u simultaneously to Eqs. �14� and

�15�, we find

M̃s = 0.2688�3�, �s = 0.102�2�J, c = 1.297�16�Ja

�21�

with �2 /DOF�1.05 �see Figs. 3 and 4�. The low-energy
constants �s and c are determined with high accuracy �at the

percent level�. The error of M̃s is even at the permille level.
The value of c obtained here is consistent with the one of a

spin-wave expansion study.28 The above value of M̃s is
larger than the one of a previous spin-wave expansion29 but
consistent with that of a series-expansion study30 �within the
comparably large 4% error of that study�. It is only slightly
larger than the value obtained in a previous Monte Carlo

TABLE I. Some numerical data for the staggered susceptibility �s and the temporal winding number
squared �Wt

2� obtained with the loop-cluster algorithm. N1 and N2 count the number of copies of elementary
rectangles in the one and two directions and Nspin=4N1N2 is the corresponding number of spins.

�J N1 N2 Nspin �sJa �Wt
2�

24 11 19 836 575.14�82� 7.828�15�
25 11 19 836 597.58�85� 7.494�15�
26 11 19 836 620.91�85� 7.177�15�
34 15 26 1560 1450�3� 10.113�20�
35 15 26 1560 1496�3� 9.797�21�
36 15 26 1560 1532�3� 9.491�22�
44 19 33 2508 2936�5� 12.411�25�
45 19 33 2508 3001�5� 12.145�25�
46 19 33 2508 3061�5� 11.848�26�
48 22 38 3344 4220�6� 15.137�28�
49 22 38 3344 4308�7� 14.796�26�
50 22 38 3344 4392�7� 14.495�28�
59 26 45 4680 7151�11� 17.123�29�
60 26 45 4680 7286�11� 16.838�29�
61 26 45 4680 7401�12� 16.557�31�

20 30 40 50 60 70
β J

10
3

10
4

χ S
Ja

4680 spins
3344 spins
2508 spins
1560 spins
836 spins

FIG. 3. �Color online� Fit of the finite-size and finite-
temperature effects of the staggered susceptibility �s to the results
of the effective theory in the cubical regime.
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calculation M̃s=0.2677�6�.25 We want to point out that our
results are obtained by fitting more than 80 numerical data
points to two analytic predictions with only three unknown

parameters. If M̃s is fixed to 0.2677, the quality of our fit

downgrades to �2 /DOF�3.0. The reduction of M̃s
=0.2688�3� and �s=0.102�2�J on the honeycomb lattice

compared to those on the square lattice �M̃s=0.3074�4� and
�s=0.186�4�J �Refs. 18 and 19�� indicates larger quantum
fluctuations on the honeycomb lattice. This is expected since
the coordination number of the honeycomb lattice is smaller
than the one of the square lattice.

Having determined the values of the low-energy param-

eters M̃s, �s, and c from the cubical space-time volume re-
gime, we can test the effective theory in the cylindrical re-
gime. Figure 5 shows a comparison of the effective theory
prediction for the probability distribution p�M3� of Eq. �19�
with Monte Carlo data. The observed excellent agreement—
which does not involve any adjustable parameters—confirms

the quantitative correctness of the effective theory.

V. SINGLE-HOLE DISPERSION RELATION

The physics of a single hole on the honeycomb lattice was
studied theoretically in Ref. 26 using exact diagonalization,
series expansion, and self-consistent Born approximation.
Here we use first-principles Monte Carlo simulations to
quantitatively investigate the single-hole dispersion relation
and quasiparticle weight. To achieve this goal, we have
implemented a technique similar to the one used in Ref. 5 to
simulate the one-hole sector of the t-J model. Some details
of the numerical method are described in the Appendix.
When one calculates the fermion two-point function in mo-
mentum space, one should keep in mind that the Brillouin
zone of the honeycomb lattice is doubly covered. The two
covers are dual to the two triangular Bravais sublattices A
and B. Therefore, one needs to distinguish the correlators
between AA, AB, BA, and BB sublattices. The correlation
function between AA sublattices with momentum k takes the
form

GAA�k,t� =
1

Z
�

x,y�A

Tr�cx
†�0�cy�t�exp�− �H��exp�− ik�x − y��

� �
n=1

�

Zn�k�exp�− �En�k� − E0�t� , �22�

where E0 is the ground-state energy of the half-filled system
and

Zn�k� = ��0 �
x�A

cx exp�ikx�n��2
. �23�

The factor Z1�k� is known as the quasiparticle weight. In
deriving Eq. �22�, we have inserted a complete set of energy
eigenstates 1=�nn��n in the single-hole sector and taken
the limit �→� in the final step. The fermion energy

Eh�k� = E1�k� − E0 �24�

corresponding to the momentum k can be extracted by fitting
the data to a single or a double exponential. The correlation
function between AA sublattices with momentum k
= � 2�

3a , 2�

3�3a
� depicted in Fig. 6 is obtained on a honeycomb

lattice with 3456 spins at J / t=2.0. A single-exponential fit
yields Eh�k�=0.207�9�t, while a double-exponential fit gives
the consistent result Eh�k�=0.201�5�t. In the same way, we
have determined the one-hole dispersion relation from the
AA correlator for all momenta k. The single-hole dispersion
relation in Fig. 7 is obtained with the same parameters as in
Fig. 6. Each energy Eh�k� in Fig. 7 is obtained directly from
the corresponding correlation function. We have performed
the same analysis on a smaller lattice, and we find that the
dispersion relation as well as the physical quantities derived
from it do not suffer from finite-size effects. The figure
shows that the hole pockets are located at �� 2�

3a , �
2�

3�3a
� and

�0, �
4�

3�3a
� in the Brillouin zone. The position of the hole

pockets agrees with the position of the Dirac cones obtained
from the free fermion theory on the honeycomb lattice which
is relevant for graphene.

20 30 40 50 60 70
β J

0

15

30

45

<
W

2 t
>

4680 spins
3344 spins
2508 spins
1560 spins
836 spins

FIG. 4. �Color online� Fit of the finite-size and finite-
temperature effects of the temporal winding number squared �Wt

2�
to the results of the effective theory in the cubical regime.

-5 -4 -3 -2 -1 0 1 2 3 4 5

M
3

10
-3

10
-2

10
-1

10
0

p(
M

3 )

FIG. 5. �Color online� Comparison of the effective theory pre-
diction for the probability distribution p�M3� of Eq. �19� with
Monte Carlo data on an N1�N2=11�19 honeycomb lattice with
Nspin=836 at �J=60. The open circles are the Monte Carlo data
while the histogram is the effective theory prediction.
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VI. EFFECTIVE FIELD THEORY FOR HOLES AND
MAGNONS

Motivated by baryon chiral perturbation theory for
QCD,31–35 based on symmetry considerations a universal ef-
fective theory for magnons and charge carriers in lightly
doped antiferromagnets on the square lattice has been con-
structed using the known location of hole or electron pock-
ets. This powerful method was used to systematically con-
struct the effective theory for t-J-type models on the square
lattice in Refs. 15, 16, and 36. The effective theories were
used to investigate the one-magnon exchange potential and
the resulting bound states between two holes and two elec-
trons as well as the possible existence of spiral phases.16,36,37

Using the information about the location of the pockets,
based on the symmetry properties of the underlying micro-
scopic theory, we have constructed a systematic low-energy
effective theory for the t-J model on the honeycomb lattice.
The details of the construction of the effective theory will be
described in a forthcoming publication. Here we briefly
sketch the principles behind this construction and present the
terms in the effective Lagrangian that are relevant for our
present study. In the effective theory, the holes which reside
in momentum space pockets centered at

k� = �0,
4�

3�3a
	, k� = �0,−

4�

3�3a
	 �25�

are represented by Grassmann fields 
s
f�x�. Here the “flavor”

index f =� ,� characterizes the corresponding hole pocket
and the index s=� denotes spin parallel �+� or antiparallel
�−� to the local staggered magnetization. The magnons are
coupled to the holes through a nonlinear realization of the
spontaneously broken SU�2�s symmetry. The global SU�2�s
symmetry then manifests itself as a local U�1�s symmetry in
the unbroken subgroup. This construction leads to an Abelian
“gauge” field v�

3 �x� and to two vector fields v�
��x� which are

“charged” under U�1�s spin transformations. The coupling of
magnons and holes is realized through v�

3 �x� and v�
��x�.

These fields have a well-defined transformation behavior un-
der the symmetries which the effective theory inherits from
the underlying microscopic models. Based on symmetry con-
siderations, we have constructed the leading-order terms of
the effective Lagrangian for magnons and holes on the hon-
eycomb lattice. In this paper we only list those terms that are
relevant for the propagation of a single hole, i.e.,

L = �
f=�,�

s=+,−

�M
s
f†
s

f + 
s
f†Dt
s

f +
1

2M�
Di
s

f†Di
s
f� . �26�

Here M is the rest mass and M� is the kinetic mass of a hole,
while D� is a covariant derivative given by

D�
�
f �x� = ��� � iv�

3 �x��
�
f �x� . �27�

Equation �26� yields circular hole pockets for small momenta
which is indeed confirmed in Fig. 8. As illustrated in Fig. 9,
the low-energy constant M� in Eq. �26� is obtained from the
curvature of the dispersion Eh�k� near a minimum. While
Fig. 9 just shows a one-dimensional cut through the center of
a hole pocket, the fit actually involves points from a two-
dimensional region in momentum space. The two fit param-
eters are the rest mass M and the kinetic mass M�. Properly

0.1

1

0 0.5 1 1.5 2 2.5 3 3.5 4

FIG. 6. Correlation function GAA�k , t� between AA sublattices
with Fourier momentum k= � 2�

3a , 2�

3�3a
�. The lower line is the result of

a single-exponential fit, while the upper curve is obtained from a
double-exponential fit.

k1

k2

0.4
0.6
0.8

1
1.2
1.4
1.6

FIG. 7. The dispersion relation Eh�k� / t for a single hole in an
antiferromagnet on the honeycomb lattice.

FIG. 8. Circular hole pockets on the honeycomb lattice. The
dots mark the centers of the hole pockets �corresponding to the
point W and its symmetry partners�. The parameters are the same as
in Fig. 7.
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taking into account the correlation of the error bars, one ob-
tains good fits. For example, on a honeycomb lattice with
3456 spins and J / t=2.0, we find M�ta2=4.1�1�.

In Figs. 10 and 11, we have plotted the single-hole dis-
persion as well as the quasiparticle residue Z1�k� over the
irreducible wedge �-K-W-� of the Brillouin zone for J / t
=1.0. The resulting bandwidth

� = Eh��� − Eh�W� �28�

is in qualitative agreement with exact diagonalization and
series-expansion results obtained in Ref. 26. While exact di-
agonalization of small systems may suffer from finite-size
effects, and series expansions may not converge in all re-
gions of parameter space, the Monte Carlo data obtained
with the efficient loop-cluster algorithm do not suffer from
systematic uncertainties. In Table II we list the kinetic mass
M� as well as the bandwidth � for a few values of J / t.

VII. CONCLUSIONS

We have studied antiferromagnetism on the honeycomb
lattice by first-principles Monte Carlo calculations. In par-
ticular, we have fitted more than hundred Monte Carlo data
obtained at rather different volumes and temperatures with
just four low-energy parameters—Ms, �s, c, and M�—of the

effective theory for the t-J model. These parameters have
been determined with percent and sometimes even with per-
mille accuracy. This should demonstrate convincingly that
the systematic low-energy effective field theory yields quan-
titatively correct results for the physics of magnons and
holes. Hence, the effective theory allows us to perform un-
biased investigations of the low-energy physics of the sys-
tem. The construction of the effective theory for lightly
doped antiferromagnets, as well as a systematic investigation
of the one-magnon exchange potential and the resulting
bound states between two holes, as well as the possible ex-
istence of spiral phases of lightly doped antiferromagnets on
the honeycomb lattice will be presented in subsequent stud-
ies.
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TABLE II. Kinetic mass M� as well as the bandwidth � for
some values of J / t.

J / t M�ta2 � / t

2.0 4.1�1� 1.15�3�
1.5 2.9�1� 1.25�3�
1.0 1.9�1� 1.24�4�
0.9 1.8�1� 1.15�6�
0.6 1.5�2� 0.9�1�
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APPENDIX: THE FERMION TWO-POINT CORRELATION
FUNCTION

In this appendix, we explain the algorithm used to calcu-
late the fermion correlation function, which is similar to the
one used in Ref. 5. An alternative efficient method is the one
described in Ref. 6. In coordinate space, the fermion two-
point correlation function is given by

G�x − y,�� =
1

Z
TrQ=0�cx

† exp�− �H�cy exp�− �� − ��H�� .

�A1�

Here the charge Q represents fermion number relative to half
filling, and TrQ=0 sums over all states of the half-filled sys-
tem. In particular,

Z = TrQ=0�exp�− �H�� �A2�

is the partition function in the zero-hole sector �i.e., the one
of the Heisenberg model�. By introducing a Trotter decom-
position of the Hamiltonian and by inserting complete sets of
states between discrete Euclidean time steps, one arrives at a
path-integral representation of the fermion two-point func-
tion. The configurations contributing to the path integral con-
tain a single hole propagating between the time slices at t
=0 and �, in which the hole is created and annihilated. The
other time slices are half filled and thus represent states of
the Heisenberg model. The Boltzmann weight of a configu-
ration is a product of contributions associated with space-
time plaquettes corresponding to a pair of nearest-neighbor
sites propagating by one discrete time step. The allowed
plaquette configurations and their corresponding Boltzmann
weights are listed in Table III.

The numerical method is based on the loop-cluster algo-
rithm for the Heisenberg model, which is used to generate
half-filled configurations without holes, based on importance
sampling using the Euclidean action of the Heisenberg
model. A fermion configuration that contributes to the two-

point function contains a hole created at the site x at time t
=0 and annihilated later at t=� at the site y. To each fermion
configuration of this kind, one can uniquely associate a half-
filled Heisenberg model configuration simply by replacing
the hole with a spin up or down, depending on which type of
hole was propagating. The contribution of a fermion path to
the two-point function is obtained by reweighting it with the
ratio of its own Boltzmann factor and the Boltzmann factor
associated with the corresponding half-filled Heisenberg
model configuration which was used for importance sam-
pling. Since each Boltzmann factor is a product of local
plaquette contributions, and since the hole configuration and
the corresponding Heisenberg model configuration differ
only along the hole path, the ratio of the two Boltzmann
factors is a product of space-time plaquette ratios along the
path of the hole.

It is important to note that many hole configurations are
associated with the same half-filled Heisenberg model con-
figuration. The reweighting method sums the contributions of
all those hole configurations to the two-point function. A
single hole is propagated through the background of each
Heisenberg model configuration generated by the loop algo-
rithm using the following method. Starting from the site x at
which the hole is created at time t=0, the hole is propagated
forward, step by step in Euclidean time. In the first discrete
time step, the hole may stay at the initial site x or may hop to
a neighboring site, provided that an allowed configuration
�with nonzero Boltzmann weight� is generated on the corre-
sponding space-time plaquette when one replaces a spin by
the hole. In particular, when the hole enters a plaquette on
which all four spins are parallel, it can either stay where it is
or hop to the neighboring site. On the other hand, when the
hole enters a plaquette with antiparallel spins, it must follow
the path of the corresponding spin. The weight of a hole path
reaching a point in the next time slice results from the ratio
of the Boltzmann factors of the new spin-hole space-time
plaquette configuration and the original pure spin Heisenberg
model configuration. The propagation to the next time slices
then proceeds iteratively, always using the propagator al-
ready built for the previous time slice. In this way, further
ratios of spin-hole plaquette weights and original pure spin
plaquette weights enter as multiplicative factors in the two-
point function. At the end of this procedure the two-point
function has been calculated for all sites y in all time slices
through which one has propagated the hole.

It should be noted that this method suffers from a sign
problem because one of the Boltzmann weights in Table III
is negative. Fortunately, this sign problem is mild in large
regions of parameter space. Although the method can also be
implemented in continuous time, in this paper we work in
discrete time, always quoting results in the time-continuum
limit.

TABLE III. Space-time plaquette configurations for a nearest-
neighbor pair of sites and their corresponding Boltzmann weights.
The diamond � stands for a hole, while ↑ and ↓ represent a fer-
mion with spins up and down, respectively.

Plaquettes Weights

↑
↑�↑

↑
↓
↓�↓

↓ exp�−�J /4�

↑
↑�↓

↓
↓
↓�↑

↑ exp��J /4�cosh��J /2�

↑
↓�↓

↑
↓
↑�↑

↓ −exp��J /4�sinh��J /2�

↑
↑��

�
↓
↓��

� cosh��t�

↑
���

↑
↓
���

↓ sinh��t�
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